Chapter |

Preliminary Description
of Error Analysis

Error analysis is the study and evaluation of uncertainty in measurement. Experience
has shown that no measurement, however carefully made, can be completely free
of uncertainties. Because the whole structure and application of science depends on
measurements, the ability to evaluate these uncertainties and keep them to a mini-
mum is crucially important.

This first chapter describes some simple measurements that illustrate the inevita-
ble occurrence of experimental uncertainties and show the importance of knowing
how large these uncertainties are. The chapter then describes how (in some simple
cases, at least) the magnitude of the experimental uncertainties can be estimated
realistically, often by means of little more than plain common sense.

I.I1 Errors as Uncertainties

In science, the word error does not carry the usual connotations of the terms mistake
or blunder. Error in a scientific measurement means the inevitable uncertainty that
attends all measurements. As such, errors are not mistakes; you cannot eliminate
them by being very careful. The best you can hope to do is to ensure that errors are
as small as reasonably possible and to have a reliable estimate of how large they
are. Most textbooks introduce additional definitions of error, and these are discussed
later. For now, error is used exclusively in the sense of uncertainty, and the two
words are used interchangeably.

I.2 Inevitability of Uncertainty

To illustrate the inevitable occurrence of uncertainties, we have only to examine any
everyday measurement carefully. Consider, for example, a carpenter who must mea-
sure the height of a doorway before installing a door. As a first rough measurement,
he might simply look at the doorway and estimate its height as 210 cm. This crude
“measurement” is certainly subject to uncertainty. If pressed, the carpenter might
express this uncertainty by admitting that the height could be anywhere between
205 cm and 215 cm.
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If he wanted a more accurate measurement, he would use a tape measure and
might find the height is 211.3 em. This measurement is certainly more precise than
his original estimate, but it is obviously still subject to some uncertainty, because it
is impossible for him to know the height to be exactly 211.3000 cm rather than
211.3001 cm, for example.

This remaining uncertainty has many sources, several of which are discussed in
this book. Some causes could be removed if the carpenter took enough trouble. For
example, one source of uncertainty might be that poor lighting hampers reading of
the tape; this problem could be corrected by improving the lighting.

On the other hand, some sources of uncertainty are intrinsic to the process of
measurement and can never be removed entirely. For example, let us suppose the
carpenter’s tape is graduated in half-centimeters. The top of the door probably will
not coincide precisely with one of the half-centimeter marks, and if it does not, the
carpenter must estimate just where the top lies between two marks. Even if the top
happens to coincide with one of the marks, the mark itself is perhaps a millimeter
wide; so he must estimate just where the top lies within the mark. In either case,
the carpenter ultimately must estimate where the top of the door lies relative to the
markings on the tape, and this necessity causes some uncertainty in the measure-
ment.

By buying a better tape with closer and finer markings, the carpenter can reduce
his uncertainty but cannot eliminate it entirely. If he becomes obsessively deter-
mined to find the height of the door with the greatest precision technically possible,
he could buy an expensive laser interferometer. But even the precision of an interfer-
ometer is limited to distances of the order of the wavelength of light (about
0.5 X 107 meters). Although the carpenter would now be able to measure the height
with fantastic precision, he still would not know the height of the doorway exactly.

Furthermore, as our carpenter strives for greater precision, he will encounter an
important problem of principle. He will certainly find that the height is different in
different places. Even in one place, he will find that the height varies if the tempera-
ture and humidity vary, or even if he accidentally rubs off a thin layer of dirt. In
other words, he will find that there is no such thing as the height of the doorway.
This kind of problem is called a problem of definition (the height of the door is not a
well-defined quantity) and plays an important role in many scientific measurements.

Our carpenter’s experiences illustrate a point generally found to be true, that is,
that no physical quantity (a length, time, or temperature, for example) can be mea-
sured with complete certainty. With care, we may be able to reduce the uncertainties
until they are extremely small, but to eliminate them entirely is impossible.

In everyday measurements, we do not usually bother to discuss uncertainties.
Sometimes the uncertainties simply are not interesting. If we say that the distance
between home and school is 3 miles, whether this means “somewhere between 2.5
and 3.5 miles” or “somewhere between 2.99 and 3.01 miles” is usually unimportant.
Often the uncertainties are important but can be allowed for instinctively and with-
out explicit consideration. When our carpenter fits his door, he must know its height
with an uncertainty that is less than 1 mm or so. As long as the uncertainty is this
small, the door will (for all practical purposes) be a perfect fit, and his concern with
error analysis is at an end.
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1.3 Importance of Knowing the Uncertainties

Our example of the carpenter measuring a doorway illustrates how uncertainties are
always present in measurements. Let us now consider an example that illustrates
more clearly the crucial importance of knowing how big these uncertainties are.
Suppose we are faced with a problem like the one said to have been solved by
Archimedes. We are asked to find out whether a crown is made of 18-karat gold, as
claimed, or a cheaper alloy. Following Archimedes, we decide to test the crown’s
density p knowing that the densities of 18-karat gold and the suspected alloy are

Pyota = 15.5 gram/cm®
and
Patoy = 13.8 gram/cm’.

If we can measure the density of the crown, we should be able (as Archimedes
suggested) to decide whether the crown is really gold by comparing p with the
known densities pyo1q and pyy;y -

Suppose we summon two experts in the measurement of density. The first ex-
pert, George, might make a quick measurement of p and report that his best estimate
for p is 15 and that it almost certainly lies between 13.5 and 16.5 gram/cm®. Our
second expert, Martha, might take a little longer and then report a best estimate of
13.9 and a probable range from 13.7 to 14.1 gram/cm®. The findings of our two
experts are summarized in Figure 1.1.
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Figure [.1. Two measurements of the density of a supposedly gold crown, The two black dots
show George’s and Martha’s best estimates for the density; the two vertical error bars show their
margins of error, the ranges within which they believe the density probably lies. George’s uncer-
tainty is so large that both gold and the suspected alloy fall within his margins of error; there-
fore, his measurement does not determine which metal was used. Martha’s uncertainty is appreci-
ably smaller, and her measurement shows clearly that the crown is not made of gold.
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The first point to notice about these results is that although Martha’s measure-
ment is much more precise, George’s measurement is probably also correct. Each
expert states a range within which he or she is confident p lies, and these ranges
overlap; so it is perfectly possible (and even probable) that both statements are
correct.

Note next that the uncertainty in George’s measurement is so large that his
results are of no use. The densities of 18-karat gold and of the alloy both lie within
his range, from 13.5 to 16.5 gram/cm®; so no conclusion can be drawn from
George’s measurements. On the other hand, Martha’s measurements indicate clearly
that the crown is not genuine; the density of the suspected alloy, 13.8, lies comfort-
ably inside Martha’s estimated range of 13.7 to 14.1, but that of 18-karat gold,
15.5, is far outside it. Evidently, if the measurements are to allow a conclusion, the
experimental uncertainties must not be too large. The uncertainties do not need to be
extremely small, however. In this respect, our example is typical of many scientific
measurements, for which uncertainties have to be reasonably small (perhaps a few
percent of the measured value) but for which extreme precision is often unnecessary.

Because our decision hinges on Martha’s claim that p lies between 13.7 and
14.1 gram/cm®, she must give us sufficient reason to believe her claim. In other
words, she must justify her stated range of values. This point is often overlooked by
beginning students, who simply assert their uncertainties but omit any justification.
Without a brief explanation of how the uncertainty was estimated, the assertion is
almost useless.

The most important point about our two experts’ measurements is this: Like
most scientific measurements, they would both have been useless if they had not
included reliable statements of their uncertainties. In fact, if we knew only the two
best estimates (15 for George and 13.9 for Martha), not only would we have been
unable to draw a valid conclusion, but we could actually have been misled, because
George’s result (15) seems to suggest the crown is genuine.

.4 More Examples

The examples in the past two sections were chosen, not for their great importance,
but to introduce some principal features of error analysis. Thus, you can be excused
for thinking them a little contrived. It is easy, however, to think of examples of
great importance in almost any branch of applied or basic science.

In the applied sciences, for example, the engineers designing a power plant
must know the characteristics of the materials and fuels they plan to use. The manu-
facturer of a pocket calculator must know the properties of its various electronic
components. In each case, somebody must measure the required parameters, and
having measured them, must establish their reliability, which requires error analysis.
Engineers concerned with the safety of airplanes, trains, or cars must understand the
uncertainties in drivers’ reaction times, in braking distances, and in a host of other
variables; failure to carry out error analysis can lead to accidents such as that shown
on the cover of this book. Even in a less scientific field, such as the manufacture of
clothing, error analysis in the form of quality control plays a vital part.
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In the basic sciences, error analysis has an even more fundamental role. When
any new theory is proposed, it must be tested against older theories by means of
one or more experiments for which the new and old theories predict different out-
comes. In principle, a researcher simply performs the experiment and lets the out-
come decide between the rival theories. In practice, however, the situation is compli-
cated by the inevitable experimental uncertainties. These uncertainties must all be
analyzed carefully and their effects reduced until the experiment singles out one
acceptable theory. That is, the experimental results, with their uncertainties, must be
consistent with the predictions of one theory and inconsistent with those of all
known, reasonable alternatives. Gbviously, the success of such a procedure depends
critically on the scientist’s understanding of error analysis and ability to convince
others of this understanding.

A famous example of such a test of a scientific theory is the measurement of
the bending of light as it passes near the sun. When Einstein published his general
theory of relativity in 1916, he pointed out that the theory predicted that light from
a star would be bent through an angle « = 1.B” as it passes near the sun. The
simplest classical theory would predict no bending (a = 0), and a more careful
classical analysis would predict (as Einstein himself poted in 1911) bending through
an angle « = 0.9". In principle, all that was necessary was to observe a star when
it was aligned with the edge of the sun and to measure the angle of bending . If
the result were a = 1.8", general relativity would be vindicated (at least for this
phenomenon); if « were found to be 0 or 0.9, general relativity would be wrong
and one of the older theories right.

In practice, measuring the bending of light by the sun was extremely hard and
was possible only during a solar eclipse. Nonetheless, in 1919 it was successfully
measured by Dyson, Eddington, and Davidson, who reported their best estimate as
a = 2", with 95% confidence that it lay between 1.7 and 2.3".} Obviously, this
result was consistent with general relativity and inconsistent with either of the older
predictions. Therefore, it gave strong support to Einstein’s theory of general rela-
tivity.

At the time, this result was controversial. Many people suggested that the uncer-
tainties had been badly underestimated and hence that the experiment was inconclu-
sive. Subsequent experiments have tended to confirm Einstein’s prediction and to
vindicate the conclusion of Dyson, Eddington, and Davidson. The important point
here is that the whole question hinged on the experimenters’ ability to estimate
reliably all their uncertainties and to convince everyone else they had done so.

Students in introductory physics laboratories are not usually able to conduct
definitive tests of new theories. Often, however, they do perform experiments that
test existing physical theories. For example, Newton’s theory of gravity predicts that
bodies fall with constant acceleration g (under the appropriate conditions), and stu-
dents can conduct experiments to test whether this prediction is correct. At first, this
kind of experiment may seem artificial and pointless because the theories have obvi-

This simplified account is based on the original paper of F. W. Dyson, A. S. Eddington, and C. Davidson
{(Philosophical Transactions of the Royal Society, 220A, 1920, 291). I have converted the probable error
originally quoted into the 95% confidence limits. The precise significance of such confidence limits will be
established in Chapter 5.
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ously been tested many times with much more precision than possible in a teaching
taboratory. Nonetheless, if you understand the crucial role of error analysis and
accept the challenge to make the most precise test possible with the available equip-
ment, such experiments can be interesting and instructive exercises.

|.5 Estimating Uncertainties When Reading Scales

Thus far, we have considered several examples that illustrate why every measure-
ment suffers from uncertainties and why their magnitude is important to know. We
have not yet discussed how we can actually evaluate the magnitude of an uncer-
tainty. Such evaluation can be fairly complicated and is the main topic of this book.
Fortunately, reasonable estimates of the uncertainty of some simple measurements
are easy to make, often using no more than common sense. Here and in Section
1.6, I discuss examples of such measurements. An understanding of these examples
will allow you to begin using error analysis in your experiments and will form the
basis for later discussions.

The first example is a measurement using a marked scale, such as the ruler in
Figure 1.2 or the voltmeter in Figure 1.3. To measure the length of the pencil in

millimeters
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Figure 1.2. Measuring a length with a ruler.

Figure 1.2, we must first place the end of the pencil opposite the zero of the ruler
and then decide where the tip comes to on the ruler’s scale. To measure the voltage
in Figure 1.3, we have to decide where the needle points on the voltmeter’s scale.
If we assume the ruler and voltmeter are reliable, then in each case the main prob-

Figure 1.3. A reading on a volimeter.
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lem is to decide where a certain point lies in relation to the scale markings. (Of
course, if there is any possibility the ruler and voltmeter are not reliable, we will
have to take this uncertainty into account as well.)

The markings of the ruler in Figure 1.2 are fairly close together (1 mm apart).
We might reasonably decide that the length shown is undoubtedly closer to 36 mm
than it is to 35 or 37 mm but that no more precise reading is possible. In this case,
we would state our conclusion as

best estimate of length = 36 mm, (.1
probable range: 35.5 to 36.5 mm

and would say that we have measured the length to the nearest millimeter.

This type of conclusion—that the quantity lies closer to a given mark than to
either of its neighboring marks-—is quite common. For this reason, many scientists
introduce the convention that the statement “/ = 36 mm” without any qualification
is presumed to mean that / is closer to 36 than to 35 or 37; that is,

! = 36 mm
means
3[55mm < I < 365 mm.

In the same way, an answer such as x = 1.27 without any stated uncertainty would
be presumed to mean that x lies between 1.265 and 1.275. In this book, I do not
use this convention but instead always indicate uncertainties explicitly. Nevertheless,
you need to understand the convention and know that it applies to any number
stated without an uncertainty, especially in this age of pocket calculators, which
display many digits. If you unthinkingly copy a number such as 123.456 from your
calculator without any qualification, then your reader is entitled to assume the num-
ber is definitely correct to six significant figures, which is very unlikely.

The markings on the voltmeter shown in Figure 1.3 are more widely spaced
than those on the ruler. Here, most observers would agree that you can do better
than simply identify the mark to which the pointer is closest. Because the spacing
is larger, you can realistically estimate where the pointer lies in the space between
two marks. Thus, a reasonable conclusion for the voltage shown might be

best estimate of voltage = 5.3 volts, (1.2)
probable range: 5.2 to 5.4 volts.

The process of estimating positions between the scale markings is called interpola-
tion. It is an important technique that can be improved with practice.

Different observers might not agree with the precise estimates given in Equa-
tions (1.1) and (1.2). You might well decide that you could interpolate for the length
in Figure 1.2 and measure it with a smaller uncertainty than that given in Equation
(1.1). Nevertheless, few people would deny that Equations (1.1) and (1.2) are rea-
sonable estimates of the quantities concerned and of their probable uncertainties.
Thus, we see that approximate estimation of uncertainties is fairly easy when the
only problem is to locate a point on a marked scale.
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{.6 Estimating Uncertainties in Repeatable Measurements

Many measurements involve uncertainties that are much harder to estimate than
those connected with locating points on a scale. For example, when we measure a
time interval using a stopwatch, the main source of uncertainty is not the difficulty
of reading the dial but our own unknown reaction time in starting and stopping the
watch. Sometimes these kinds of uncertainty can be estimated reliably, if we can
repeat the measurement several times. Suppose, for example, we time the period of
a pendulum once and get an answer of 2.3 seconds. From one measurement, we
can’t say much about the experimental uncertainty. But if we repeat the measure-
ment and get 2.4 seconds, then we can immediately say that the uncertainty is
probably of the order of 0.1 s. If a sequence of four timings gives the results (in
seconds),

2.3,24,25, 2.4, (1.3)

then we can begin to make some fairly realistic estimates.

First, a natural assumption is that the best estimate of the period is the average?
value, 2.4 s.

Second, another reasonably safe assumption is that the correct period lies be-
tween the lowest value, 2.3, and the highest, 2.5. Thus, we might reasonably con-
clude that

best estimate = average = 2.4 s, (1.4)
probable range: 2.3 to 2.5 s.

Whenever you can repeat the same measurement several times, the spread in
your measured values gives a valuable indication of the uncertainty in your mea-
surements. In Chapters 4 and 5, 1 discuss statistical methods for treating such re-
peated measurements. Under the right conditions, these statistical methods give a
more accurate estimate of uncertainty than we have found in Equation (1.4) using
just common sense. A proper statistical treatment also has the advantage of giving
an objective value for the uncertainty, independent of the observer’s individual judg-
ment.> Nevertheless, the estimate in statement (1.4) represents a simple, realistic
conclusion to draw from the four measurements in (1.3).

Repeated measurements such as those in (1.3) cannot always be relied on to
reveal the uncertainties. First, we must be sure that the quantity measured is really
the same quantity each time. Suppose, for example, we measure the breaking
strength of two supposedly identical wires by breaking them (something we can’t
do more than once with each wire). If we get two different answers, this difference
may indicate that our measurements were uncertain or that the two wires were not
really identical. By itself, the difference between the two answers sheds no light on
the reliability of our measurements.

ZI will prove in Chapter 5 that the best estimate based on several measurements of a quantity is almost
always the average of the measurements,

3 Also, a proper statistical treatment usually gives a smaller uncertainty than the full range from the lowest
to the highest observed value. Thus, upon looking at the four timings in (1.3), we have judged that the period
is “probably” somewhere between 2.3 and 2.5 s. The statistical methods of Chapters 4 and 5 let us state with
70% confidence that the period les in the smaller range of 2.36 to 2.44 s.
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Even when we can be sure we are measuring the same quantity each time,
repeated measurements do not always reveal uncertainties. For example, suppose
the clock used for the timings in (1.3) was running consistently 5% fast. Then, all
timings made with it will be 5% too long, and no amount of repeating (with the
same clock) will reveal this deficiency. Errors of this sort, which affect all measure-
ments in the same way, are called systematic errors and can be hard to detect, as
discussed in Chapter 4. In this example, the remedy is to check the clock against a
more reliable one. More generally, if the reliability of any measuring device is in
doubt, it should clearly be checked against a device known to be more reliable.

The examples discussed in this and the previous section show that experimental
uncertainties sometimes can be estimated easily. On the other hand, many measure-
ments have uncertainties that are nof so easily evaluated. Also, we ultimately want
more precise values for the uncertainties than the simple estimates just discussed.
These topics will occupy us from Chapter 3 onward. In Chapter 2, | assume tempo-
rarily that you know how to estimate the uncertainties in all quantities of interest,
so that we can discuss how the uncertainties are best reported and how they are
used in drawing an experimental conclusion.



Chapter 2

How to Report and Use
Uncertainties

Having read Chapter 1, you should now have some idea of the importance of experi-
mental uncertainties and how they arise. You should also understand how uncertain-
ties can be estimated in a few simple situations. In this chapter, you will learn some
basic notations and rules of error analysis and study examples of their use in typical
experiments in a physics laboratory. The aim is to familiarize you with the basic
vocabulary of error analysis and its use in the introductory laboratory. Chapter 3
begins a systematic study of how uncertainties are actually evaluated.

Sections 2.1 to 2.3 define several basic concepts in error analysis and discuss
general rules for stating uncertainties. Sections 2.4 to 2.6 discuss how these ideas
could be used in typical experiments in an introductory physics laboratory. Finally,
Sections 2.7 to 2.9 introduce fractional uncertainty and discuss its significance.

2.1 Best Estimate * Uncertainty

We have seen that the correct way to state the result of measurement iS to give a
best estimate of the quantity and the range within which you are confident the
quantity lies. For example, the result of the timings discussed in Section 1.6 was
reported as

best estimate of time = 2.4 s, 2.1)

probable range: 2.3 to 2.5 s.
Here, the best estimate, 2.4 s, lies at the midpoint of the estimated range of probable
values, 2.3 to 2.5 s, as it has in all the examples. This relationship is obviously
natural and pertains in most measurements. It allows the results of the measurement

to be expressed in compact form. For example, the measurement of the time re-
corded in (2.1) is usually stated as follows:

measured value of time = 2.4 = 0.1 s. (2.2)

This single equation is equivalent to the two statements in (2.1).
In general, the result of any measurement of a quantity x is stated as

(2.3)
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This statement means, first, that the experimenter’s best estimate for the quantity
concerned is the number x,,, and second, that he or she is reasonably confident the
quantity lies somewhere between x,,., — 6x and x,,., -+ Ox. The number dx is called
the uncertainty, or error, or margin of error in the measurement of x. For conve-
nience, the uncertainty ox is always defined to be positive, so that X, + ox is
always the highest probable value of the measured quantity and x, — Ox the
lowest.

I have intentionally left the meaning of the range x,.,, — 6 tO Xy + Ox SOme-
what vague, but it can sometimes be made more precise. In a simple measurement
such as that of the height of a doorway, we can easily state a range X, — 6x
10 Xy + Ox within which we are absolutely certain the measured quantity lies.
Unfortunately, in most scientific measurements, such a statement is hard to make.
In particular, to be completely certain that the measured gquantity lies between
Xpest — Ox and X,o, + Ox, we usually have to choose a value for Ox that is too large
to be useful. To avoid this situation, we can sometimes choose a value for ox that
lets us state with a certain percent confidence that the actual quantity lies within the
range X,. = &x. For instance, the public opinion polls conducted during elections
are traditionally stated with margins of error that represent 95% confidence limits.
The statement that 60% of the electorate favor Candidate A, with a margin of error
of 3 percentage points (60 £ 3), means that the pollsters are 95% confident that the
percent of voters favoring Candidate A is between 57 and 63; in other words, after
many elections, we should expect the correct answer to have been inside the stated
margins of error 95% of the times and outside these margins only 5% of the times.

Obviously, we cannot state a percent confidence in our margins of error until
we understand the statistical laws that govern the process of measurement. I return
to this point in Chapter 4. For now, let us be content with defining the uncertainty
&x so that we are “reasonably certain” the measured quantity lies between X, — Ox
and x,., + Ox.

Quick Check' 2.1. (a) A student measures the length of a simple pendulum
and reports his best estimate as 110 mm and the range in which the length
probably lies as 108 to 112 mm. Rewrite this result in the standard form (2.3).
(b) If another student reports her measurement of a current as I = 3.05 + 0.03
amps, what is the range within which / probably lies?

2.2 Significant Figures

Several basic rules for stating uncertainties are worth emphasizing. First, because
the quantity dx is an estimate of an uncertainty, obviously it should not be stated

'These “Quick Checks” appear at intervals through the text to give you a chance to check your understand-
ing of the concept just introduced. They are straightforward exercises, and many can be done in your head. 1
urge you to take a moment to make sure you can do them; if you cannot, you should reread the preceding
few paragraphs.
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with too much precision. If we measure the acceleration of gravity g, it would be
absurd to state a result like

(measured g) = 9.82 + 0.02385 m/s*. 2.4

The uncertainty in the measurement cannot conceivably be known to four significant
figures. In high-precision work, uncertainties are sometimes stated with two signifi-
cant figures, but for our purposes we can state the following rule:

(2.5)

Thus, if some calculation yields the uncertainty 8g = 0.02385 m/s?, this answer
should be rounded to 8g = 0.02 m/s?, and the conclusion (2.4) should be rewritten
as

(measured g) = 9.82 + 0.02 m/s%. (2.6)

An important practical consequence of this rule is that many error calculations can
be carried out mentally without using a calculator or even pencil and paper.

The rule (2.5) has only one significant exception. If the leading digit in the
uncertainty ox is a 1, then keeping two significant figures in dx may be better. For
example, suppose that some calculation gave the uncertainty 6x = (.14, Rounding
this number to & = 0.1 would be a substantial proportionate reduction, so we could
argue that retaining two figures might be less misleading, and quote 8x = 0.14. The
same argument could perhaps be applied if the leading digit is a 2 but certainly not
if it is any larger.

Once the uncertainty in a measurement has been estimated, the significant fig-
ures in the measured value must be considered. A statement such as

measured speed = 6051.78 + 30 m/s 2.7

is obviously ridiculous. The uncertainty of 30 means that the digit 5 might really be
as small as 2 or as large as 8. Clearly the trailing digits 1, 7, and 8 have no signifi-
cance at all and should be rounded. That is, the correct statement of (2.7) is

measured speed = 6050 * 30 m/s. (2.8)

The general rule is this:

2.9
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For example, the answer 92.81 with an uncertainty of 0.3 should be rounded as
92.8 + 0.3.
If its uncertainty is 3, then the same answer should be rounded as
93 + 3,
and if the uncertainty is 30, then the answer should be
90 = 30.

An important qualification to rules (2.5) and (2.9) is as follows: To reduce
inaccuracies caused by rounding, any numbers to be used in subsequent calculations
should normally retain at least one significant figure more than is finally justified.
At the end of the calculations, the final answer should be rounded to remove these
extra, insignificant figures. An electronic calculator will happily carry numbers with
far more digits than are likely to be significant in any calculation you make in a
laboratory. Obviously, these numbers do not need to be rounded in the middie of a
calculation but certainly must be rounded appropriately for the final answers.?

Note that the uncertainty in any measured quantity has the same dimensions as
the measured quantity itself. Therefore, writing the units (m/s%, cm?, etc.) after both
the answer and the uncertainty is clearer and more economical, as in Equations
(2.6) and (2.8). By the same token, if a measured number is so large or small that
it calls for scientific notation (the use of the form 3 X 10° instead of 3,000, for
example), then it is simpler and clearer to put the answer and uncertainty in the
same form. For example, the result

measured charge = (1.61 % 0.05) X 10! coulombs
is much easier to read and understand in this form than it would be in the form

measured charge = 1.61 X 1071 + 5 X 10~?! coulombs.

Quick Check 2.2. Rewrite each of the following measurements in its most
appropriate form:

(@ v = 8.123456 + 0.0312 m/s

(b) x = 31234 X 10° £+ 2 m

(©) m = 5.6789 X 1077 + 3 X 1077 kg.

2.3 Discrepancy

Before 1 address the question of how to use uncertainties in experimental reports, a
few important terms should be introduced and defined. First, if two measurements

2Rule (2.9) has one more small exception. If the leading digit in the uncertainty is small (a 1 or, perhaps,
a 2), retaining one extra digit in the final answer may be appropriate. For example, an answer such as 3.6 = 1
is quite acceptable because one could argue that rounding it to 4 = 1 would waste information.
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of the same quantity disagree, we say there is a discrepancy. Numerically, we define
the discrepancy between two measurements as their difference:

(2.10)

More specifically, each of the two measurements consists of a best estimate and an
uncertainty, and we define the discrepancy as the difference between the two best
estimates. For example, if two students measure the same resistance as follows

Student A: 15 * 1 ohms
and
Student B: 25 # 2 ohms,
their discrepancy is
discrepancy = 25 ~ 15 = 10 ohms.

Recognize that a discrepancy may or may not be significant. The two measure-
ments just discussed are illustrated in Figure 2.1(a), which shows clearly that the
discrepancy of 10 ohms is significant because no single value of the resistance is
compatible with both measurements. Obviously, at least one measurement is incor-
rect, and some careful checking is needed to find out what went wrong.
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Figure 2.1. (a) Two measurements of the same resistance. Each measurement includes a best
estimate, shown by a block dot, and a range of probable values, shown by a vertical error bar.
The discrepancy (difference between the two best estimates) is 10 ohms and is significant be-
cause it is much larger than the combined uncertainty in the two measurements. Almost cer-
tainly, at least one of the experimenters made a mistake. (b) Two different measurements of the
same resistance. The discrepancy is again 10 ohms, but in this case it is insignificant because the
stated margins of error overlap. There is no reason to doubt either measurement (although they
could be criticized for being rather imprecise).
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Suppose, on the other hand, two other students had reported these results:
Student C: 16 = 8 ohms
and
Student D: 26 % 9 ohms.

Here again, the discrepancy is 10 ohms, but in this case the discrepancy is insignifi-
cant because, as shown in Figure 2.1(b), the two students’ margins of error overlap
comfortably and both measurements could well be correct. The discrepancy between
two measurements of the same quantity should be assessed not just by its size
but, more importantly, by how big it is compared with the uncertainties in the
measurements.

In the teaching laboratory, you may be asked to measure a quantity that has
been measured carefully many times before, and for which an accurate accepred
value is known and published, for example, the electron’s charge or the universal
gas constant. This accepted value is not exact, of course; it is the result of measure-
ments and, like all measurements, has some uncertainty. Nonetheless, in many cases
the accepted value is much more accurate than you could possibly achieve yourself.
For example, the currently accepted value of the universal gas constant R is

(accepted R) = 8.31451 + 0.00007 J/(mol-K). (2.11)

As expected, this value is uncertain, but the uncertainty is extremely small by the
standards of most teaching laboratories. Thus, when you compare your measured
value of such a constant with the accepted value, you can usually treat the accepted
value as exact.’

Although many experiments call for measurement of a quantity whose accepted
value is known, few require measurement of a quantity whose true value is known.*
In fact, the true value of a measured quantity can almost never be known exactly
and is, in fact, hard to define. Nevertheless, discussing the difference between a
measured value and the corresponding true value is sometimes useful. Some authors
call this difference the true error.

2.4 Comparison of Measured and Accepted Values

Performing an experiment without drawing some sort of conclusion has little merit.
A few experiments may have mainly qualitative results—the appearance of an inter-
ference pattern on a ripple tank or the color of light transmitted by some optical
system—but the vast majority of experiments lead to quantitative conclusions, that
is, to a statement of numerical results. It is important to recognize that the statement
of a single measured number is completely uninteresting. Statements that the density

3This is not always so. For example, if you look up the refractive index of glass, you find values ranging
from 1.5 to 1.9, depending on the composition of the glass. In an experiment to measure the refractive index
of a piece of glass whose composition is unknown, the accepted value is therefore no more than a rough guide
to the expected answer.

“Here is an example: If you measure the ratio of a circle’s circumference to its diameter, the true answer is
exactly m. (Obviously such an experiment is rather contrived.)
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Figure 2.2, Three measurements of the speed of sound at standard temperature and pressure.
Because the accepted value (331 m/s) is within Student A’s margins of error, her result is satis-
factory. The accepted value is just outside Student B’s margin of error, but his measurement is
nevertheless acceptable. The accepted value is far ourside Student C’s stated margins, and his
measurement is definitely unsatisfactory.

of some metal was measured as 9.3 + 0.2 gram/cm?® or that the momentum of a
cart was measured as 0.051 = 0.004 kg-m/s are, by themselves, of no interest. An
interesting conclusion must compare two or more numbers: a measurement with
the accepted value, a measurement with a theoretically predicted value, or several
measurements, to show that they are related to one another in accordance with some
physical law. It is in such comparison of numbers that error analysis is so important.
This and the next two sections discuss three typical experiments to illustrate how
the estimated uncertainties are used to draw a conclusion.

Perhaps the simplest type of experiment is a measurement of a quantity whose
accepted value is known. As discussed, this exercise is a somewhat artificial experi-
ment peculiar to the teaching laboratory. The procedure is to measure the quantity,
estimate the experimental uncertainty, and compare these values with the accepted
value. Thus, in an experiment to measure the speed of sound in air (at standard
temperature and pressure), Student A might arrive at the conclusion

A’s measured speed = 329 = 5 m/s, (2.12)

compared with the

il

accepted speed 331 my/s. (2.13)

Student A might choose to display this result graphically as in Figure 2.2. She
should certainly include in her report both Equations (2.12) and (2.13) next to each
other, so her readers can clearly appreciate her result. She should probably add an
explicit statement that because the accepted value lies inside her margins of error,
her measurement seems satisfactory.

The meaning of the uncertainty &x is that the correct value of x probably lies
between X, — ox and ., + Ox; it is certainly possible that the correct value lies
slightly outside this range. Therefore, a measurement can be regarded as satisfactory
even if the accepted value lies slightly outside the estimated range of the measured
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value, For example, if Student B found the value
B’s measured speed = 325 % 5 m/s,

he could certainly claim that his measurement is consistent with the accepted value
of 331 m/s.

On the other hand, if the accepted value is well outside the margins of error
(the discrepancy is appreciably more than twice the uncertainty, say), there is reason
to think something has gone wrong. For example, suppose the unlucky Student C
finds

C’s measured speed = 345 & 2 m/s (2.14)

compared with the
accepted speed = 331 m/s. (2.15)

Student C’s discrepancy is 14 m/s, which is seven times bigger than his stated
uncertainty (see Figure 2.2). He will need to check his measurements and calcula-
tions to find out what has gone wrong.

Unfortunately, the tracing of C’s mistake may be a tedious business because of
the numerous possibilities. He may have made a mistake in the measurements or
calculations that led to the answer 345 m/s. He may have estimated his uncertainty
incorrectly. (The answer 345 % 15 m/s would have been acceptable.) He also might
be comparing his measurement with the wrong accepted value. For example, the
accepted value 331 m/s is the speed of sound at standard temperature and pressure.
Because standard temperature is 0°C, there is a good chance the measured speed in
(2.14) was not taken at standard temperature. In fact, if the measurement was made
at 20°C (that is, normal room temperature), the correct accepted value for the speed
of sound is 343 m/s, and the measurement would be entirely acceptable.

Finally, and perhaps most likely, a discrepancy such as that between (2.14) and
(2.15) may indicate some undetected source of systematic error (such as a clock
that runs consistently slow, as discussed in Chapter 1). Detection of such systematic
errors (ones that consistently push the resuit in one direction) requires careful check-
ing of the calibration of all instruments and detailed review of all procedures.

2.5 Comparison of Two Measured Numbers

Many experiments involve measuring two numbers that theory predicts should be
equal. For example, the law of conservation of momentum states that the total mo-
mentum of an isolated system is constant. To test it, we might perform a series of
experiments with two carts that collide as they move along a frictionless track. We
could measure the total momentum of the two carts before (p) and after (q) they
collide and check whether p= g within experimental uncertainties. For a single pair
of measurements, our results could be

initial momentum p = 1.49 * (.03 kg'm/s
and

final momentum g = 1.56 * 0.06 kg-m/s.
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Figure 2.3. Measured values of the total momentum of two carts before (p) and after (g) a col-
lision. Because the margins of error for p and g overlap, these measurements are certainly consis-
tent with conservation of momentum (which implies that p and ¢ should be equal).

Here, the range in which p probably lies (1.46 to 1.52) overlaps the range in which
g probably lies (1.50 to 1.62). (See Figure 2.3.) Therefore, these measurements are
consistent with conservation of momentum. If, on the other hand, the two probable
ranges were not even close to overlapping, the measurements would be inconsistent
with conservation of momentum, and we would have to check for mistakes in our
measurements or calculations, for possible systematic errors, and for the possibility
that some external forces (such as gravity or friction) are causing the momentum of
the system to change.

If we repeat similar pairs of measurements several times, what is the best way
to display our results? First, using a table to record a sequence of similar measure-
ments is usually better than listing the results as several distinct statements. Second,
the uncertainties often differ little from one measurement to the next. For example,
we might convince ourselves that the uncertainties in all measurements of the initial
momentum p are about §p =~ 0.03 kg-m/s and that the uncertainties in the final ¢
are all about 8¢ =~ (.06 kg'm/s. If so, a good way to display our measurements
would be as shown in Table 2.1.

Table 2.1. Measured momenta (kg-m/s).

Trial Initial momentum p Final momentum g
number (all £0.03) (all x0.06)
1 149 1.56
2 310 3.12
3 2.16 2.05
eic.

For each pair of measurements, the probable range of values for p overlaps (or
nearly overlaps) the range of values for ¢. If this overlap continues for all measure-
ments, our results can be pronounced consistent with conservation of momentum.
Note that our experiment does not prove conservation of momentum; no experiment
can. The best you can hope for is to conduct many more frials with progressively

2]
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smaller uncertainties and that all the results are consistent with conservation of
momentum.

In a real experiment, Table 2.1 might contain a dozen or more entries, and
checking that each final momentum q is consistent with the corresponding initial
momentum p could be tedious. A better way to display the results would be to add
a fourth column that lists the differences p ~ ¢. If momentum is conserved, these
values should be consistent with zero. The only difficulty with this method is that
we must now compute the uncertainty in the difference p — ¢. This computation is
performed as follows. Suppose we have made measurements

(measured p) = p,. += Op
and
(measured q) = @ = Oq.

The numbers p,., and g, are our best estimates for p and g. Therefore, the best
estimate for the difference (p — ¢) IS (Ppest = Gpey). 1O find the uncertainty in
(p — ¢q), we must decide on the highest and lowest probable values of (p — ¢q). The
highest value for (p — ¢) would result if p had its largest probable value,
Dhest T Op, at the same time that g had its smallest value gy, — 8q. Thus, the
highest probable value forp — g is

highest probable value = (p,., ~ Gue) + (6P + 89). (2.16)

Similarly, the lowest probable value arises when p is smallest (py.~ 6p), but ¢ is
largest (g + 8g). Thus,

lowest probable value = (ppog = Gues) = (8P + 89). (217

Combining Equations (2.16) and (2.17), we see that the uncertainty in the difference
(r — q) is the sum Sp + 6q of the original uncertainties. For example, if

1.49 = 0.03 kg'm/s

i

p

and
q = 1.56 + 0.06 kg-m/s,
then
p—q = —007 = 0.09 kg-m/s.

We can now add an extra column for p — ¢ to Table 2.1 and arrive at Table
2.2.

Table 2.2. Measured momenta (kg-m/s).

Trial Initial p Final ¢ Difference p—g¢g
number (all +0.03) (all +0.06) (all +0.09)
1 1.49 1.56 - 0.07
2 310 3.12 —0.02
3 2.16 2.05 0.11

etc.
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Figure 2.4. Three trials in a test of the conservation of momentum. The student has measured
the total momentum of two carts before and after they collide (p and g, respectively). If momen-
tum is conserved, the differences p — g should all be zero. The plot shows the value of p ~ ¢
with its error bar for each trial. The expected value ( is inside the margins of error in trials 1
and 2 and only slightly outside in trial 3. Therefore, these results are consistent with the conser-
vation of momentum,

Whether our results are consistent with conservation of momentum can now be seen
at a glance by checking whether the numbers in the final column are consistent with
zero (that is, are less than, or comparable with, the uncertainty 0.09). Alternatively,
and perhaps even better, we could plot the results as in Figure 2.4 and check visu-
ally. Yet another way to achieve the same effect would be to calculate the ratios
q/p, which should all be consistent with the expected value g/p = 1. (Here, we
would need to calculate the uncertainty in ¢/p, a problem discussed in Chapter 3.)

Our discussion of the uncertainty in p ~ ¢ applies to the difference of any two
measured numbers. If we had measured any two numbers x and y and used our
measured values to compute the difference x — y, by the argument just given, the
resulting uncertainty in the difference would be the sum of the separate uncertainties
in x and y. We have, therefore, established the following provisional rule:

Uncertainty in a Difference
{Provisional Rule)

if two quantities x and y are measured with uncertainties ox
and Jy, and if the measured values x and y are used to calculate
the difference ¢ = x — y, the uncertainty in q is the sum of
the uncertainties in x and y:

8q ~ & + Oy (2.18)

I call this rule “provisional” because we will find in Chapter 3 that the uncertainty
in the quantity ¢ = x - y is often somewhat smaller than that given by Equation

23
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(2.18). Thus, we will be replacing the provisional rule (2.18) by an “improved”
rule—in which the uncertainty in ¢ = x — y is given by the so-called quadratic
sum of dx and dy, as defined in Equation (3.13). Because this improved rule gives
a somewhat smaller uncertainty for g, you will want to use it when appropriate. For
now, however, let us be content with the provisional rule (2.18) for three reasons:
(1) The rule (2.18) is easy to understand-—much more so than the improved rule of
Chapter 3. (2) In most cases, the difference between the two rules is small. (3) The
rule (2.18) always gives an upper bound on the uncertainty in g = x — y; thus, we
know at least that the uncertainty in x ~ y is never worse than the answer given in
(2.18).

The result (2.18) is the first in a series of rules for the propagation of errors.
To calculate a quantity ¢ in terms of measured quantities x and y, we need to know
how the uncertainties in x and y “propagate” to cause uncertainty in g. A complete
discussion of error propagation appears in Chapter 3.

Quick Check 2.3. In an experiment to measure the latent heat of ice, a student
adds a chunk of ice to water in a styrofoam cup and observes the change in
temperature as the ice melts. To determine the mass of ice added, she weighs
the cup of water before and after she adds the ice and then takes the difference.
If her two measurements were

{mass of cup & water) = m; = 203 & 2 grams
and
(mass of cup, water, & ice) = m, = 246 * 3 grams,

find her answer for the mass of ice, m, — m,, with its uncertainty, as given by
the provisional rule (2.18).

2.6 Checking Relationships with a Graph

Many physical laws imply that one quantity should be proportional to another. For
example, Hooke’s law states that the extension of a spring is proportional to the
force stretching it, and Newton’s law says that the acceleration of a body is propor-
tional to the total applied force. Many experiments in a teaching laboratory are
designed to check this kind of proportionality.

If one quantity y is proportional to some other quantity x, a graph of y against
x is a straight line through the origin. Thus, to test whether y is proportional to x,
you can plot the measured values of y against those of x and note whether the
resuiting points do lie on a straight line through the origin. Because a straight line
is so easily recognizable, this method is a simple, effective way to check for propor-
tionality.

To illustrate this use of graphs, let us imagine an experiment to test Hooke’s
law. This law, usually written as F' = kx, asserts that the extension x of a spring is
proportional to the force F stretching it, sox = F/k, where k is the “force constant”



